Epigenetic methylation status of P16, MGMT and SPOCK2 in diffuse Large B cell lymphoma

Lailatul Jalilaha | Aziah Ismailb | Norlelawati A. Talibc | Naznin Muhammadc | Faezahul Arbaeyah Hussaind | Norafiza Zainuddina

aDepartment of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia

bInstitute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia

cDepartment of Pathology and Laboratory Medicine, Kulliyyah of Medicine, International Islamic University Malaysia

dDepartment of Pathology, School of Medical Sciences, Universiti Sains Malaysia

Introduction: Epigenetic methylation has been implicated in the pathogenesis of diffuse large B cell lymphoma (DLBCL). This study investigated the methylation status of \textit{p16}, \textit{MGMT} and \textit{SPOCK2}. Aberrantly methylated \textit{p16} and \textit{MGMT} have been linked to DLBCL, but not \textit{SPOCK2}. \textit{p16} inhibits cyclin-dependent kinase, which results in retinoblastoma phosphorylation and blockage of cell cycle at G1 phase. \textit{MGMT} removes alkyl adduct at O6-guanine, thus preventing lethal cross-links. \textit{SPOCK2}, an extracellular chondroitin and heparin sulfate proteoglycans, abolishes the inhibition of membrane-type 1-matrix metalloproteinase which might enhance the angiogenesis. The absence of \textit{SPOCK2} methylation was therefore hypothesized in the majority of cases in this study. Methods: Extracted DNA from 88 formalin-fixed paraffin-embedded (FFPE) tissues of DLBCL were subjected to bisulfite conversion followed by methylation-specific PCR (MSP) analysis for \textit{p16}, \textit{MGMT} and \textit{SPOCK2} methylation. \textit{p16} methylation was also quantified in 16 samples through pyrosequencing assay. Results: \textit{p16} methylation was observed in 65/88 (74\%) samples by MSP. Pyrosequencing detected \textit{p16} methylation in all 16 samples ranging from 18\% to 81\%. \textit{MGMT} methylation was detected in all 88 (100\%) cases. Methylated \textit{SPOCK2} was found in 83 (94.3\%) samples. There was a significant association between \textit{p16} methylation status with patients above 50 years of age (\textit{p} = 0.04). Conclusions: These preliminary discoveries may serve as a good platform in order to gain a comprehensive overview on the epigenetics contribution in the pathogenesis of DLBCL. Pyrosequencing is a robust tool in detecting and quantifying methylation.

\textbf{KEYWORDS:} DLBCL, epigenetics, MSP, pyrosequencing