
Aspalilah Alias (AA) MMedSc 1,2, AbdelNasser Ibrahim (ANI) MSc 1.3, Siti Noorain Abu Bakar (SNAB) BSc1, Mohamed Swarhib Shafie (MSS) DMJ1, Srijit Das (SD) MS 4, Faridah Mohd Nor (FMN) PhD1
1Forensic Unit, Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
2Faculty of Dentistry, Universiti Sains Islam Malaysia, Tingkat 15, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia.
3Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al Azhar University, Cairo, Egypt.
4Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur.

Abstract

Introduction: The mental foramen is present on either side of the body of the mandible bone. This foramen transmits mental vessels and nerves. In forensic anthropology, mental foramen may be important for differentiating sex, estimating age and identifying various races based on morphology. The main aim of the present study was to determine the position, shape and diameter of the mental foramen according to sex, age and race by postmortem computed tomography in the Malaysian population. Materials and Methods: A total of 79 dentulous patients (48 males, 31 females) from 3 age groups (18-30 years, 31- 50 years, 51-74 years) were selected for this study, and ten parameters were observed for each mandible. The parameters were divided into two morphological and eight morphometric parameters. The morphometric parameters were measured by using Osirix MD Software 3D Volume Rendering. Results: Results showed that mandibular body length and height were significantly greater in males than in females by independent t-test. (p < 0.05). However, the mandibular body height was found to decrease significantly with age in both sexes by one-way Anova. It was observed that the shape of mental foramen was 45.6% oval and 54.4% rounded. About 44.3% of them were in line with the longitudinal axis of the second premolar tooth. Conclusion: It was concluded that mental foramen may be used for identification purposes, particularly for sex, age and race determination.

KEYWORDS: anthropology, mandible, sex, age, race.

Introduction

The mental foramen is present in the body of the mandible, and it transmits mental vessels and nerves. In forensic anthropology, analysing the morphological features of the bone is important as it can differentiate between sex, age and race1. The mandible is the strongest bone in the human face, and it is preserved much longer compared to other bones. Compared to other parts of mandible, mental foramen is usually selected due to its stability and durability2. According to the literature, the mental foramen is located between the apices of the premolars or the second premolar, from which the mental nerve and vessels emerge3. However, studies have reported variations in the position of the mental foramen 4-14.

The direction of the foramen bears much clinical significance, especially with regard to administration local anaesthesia to the mental nerve. The knowledge of position of mental foramen is important in cases of surgery and implant placement15. The mental nerve is the terminal branch of the inferior alveolar nerve and it traverses the mental foramen giving sensory innervation to the lower lip, buccal vestibule and gingiva medial to the first mandibular molar4.

The mental foramen vary in position with regard to age, and it can be influenced by other demographic
factors such as sex and ethnicity16. Skeletal development in bones, cranial sutures and teeth takes place at specific ages17. Estimation of age is important after sex determination in the identification of human remains. Estimation of age becomes more difficult as bone matures18.

There are several methods, which have been proposed for identification and these include radiological, histological and chemical analysis18. The radiographic method is the simplest and cheapest method of age, sex and race determination when compared to histological and biochemical methods1. Panoramic radiograph, periapical radiograph, Magnetic Resonance Imaging (MRI), Cone Beam Computed Tomography (CBCT), Spiral Computed Tomography (SCT) and Multi-Slice Computed Tomography (MSCT) were used in the past to determine the position of mental foramen19-23. In Malaysia so far, the mental foramen has been only studied by using panoramic radiograph24. To the best of our knowledge, the present study is the first of its kind to use postmortem computed tomography (PMCT) to determine the position of the mental foramen for identification of sex, age and race in the Malaysian population.

Materials and Methods

This study was a retrospective study conducted at Hospital Kuala Lumpur. The database was collected from postmortem computed tomography (PMCT) images retrieved from the Department of Forensic Medicine, Hospital Kuala Lumpur. The sample comprised all individuals with documented sex, race and age received by the mortuary for four years duration from January, 2012 till June, 2016. A total of 79 dentulous mandibles were obtained (48 males and 31 females). The subjects were in three age groups, i.e. 18-30 yrs (n=26); 31-50 yrs (n=31) and 51-74 yrs (n=22) and were divided into three ethnic, racial groups i.e. Malays (32), Chinese (20) and Indians (27).

All intact and well formed, adult mandibles were chosen for the study. The pathological, edentulous, deformed or broken mandibles were excluded from the study. The morphology and position of the mental foramen were described accordingly, while morphometric measurements of mental foramen were measured on the right side of each mandible by using Osirix MD software from 3D Volume Rendering. The measurements in centimetres (cm) were rounded off to nearest 2 decimal places. The study was approved by the Medical Ethics Committee, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKM PPI/111/8/JEP-2016-359).

Morphological Parameters

i) The shape of the right side of mental foramen was described as either round or oval. (Fig. 1)

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1}
\caption{PMCT of mental foramen on the right side of mandible. (a - rounded type of mental foramen, b - oval type of mental foramen)}
\end{figure}

ii) Based on earlier research protocols, the position of mental foramen was classified according to the longitudinal axis of the mandibular teeth as described below [25-26]: (Fig. 2)

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig2}
\caption{Schematic representation of the numeric expression of position of mental foramen relative to the teeth. Adapted from [26]}
\end{figure}

a. Position 1 - Foramen lying on a longitudinal axis passing between canine and first premolar.

b. Position 2 - Foramen lying on the longitudinal axis of first premolar.

c. Position 3 - Foramen lying on a longitudinal axis passing between first and second premolars.

d. Position 4 - Foramen lying on the longitudinal axis of second premolar.

e. Position 5 - Foramen lying on a longitudinal axis passing between second premolar and first molar.

f. Position 6 - Foramen lying on the longitudinal axis of the first molar.
Morphometric Parameters

There were eight morphometric parameters as described below [27]. (Fig. 3)

a. **AC** - Distance from alveolar crest to upper margin of mental foramen.
b. **BD** - Distance from lower border of mandible to lower margin of mental foramen.
c. **AB** - Distance from alveolar crest to lower border of mandible.
d. **VD** - Vertical diameter of foramen, (\(AB-(AC+BD)\)).
e. **WY** - Distance from symphysis menti to medial margin of mental foramen.
f. **XZ** - Distance from posterior border of ramus of mandible to lateral margin of mental foramen.
g. **WX** - Distance from symphysis menti to posterior border of ramus of mandible.
h. **HD** - Horizontal diameter of foramen, **WX**-(**WY**+**XZ**).

Results

Results showed that mental foramen was rounded and oval in 54.4% and 45.6% of mandibles, respectively. (Fig. 4) The commonest position of mental foramen was in line with the longitudinal axis of second premolar (position 4) (44.3%), followed by foramen lying on a longitudinal axis passing between second premolar and first molar (position 5) (30.4%), foramen lying on a longitudinal axis passing between first and second premolars (position 3) (19%) and foramen lying on the longitudinal axis of the first molar (position 6) (6.3%). The mental foramen didn’t present in position 1 and 2 in any of the mandibles observed. (Table I) In this study, however the commonest shape of mental foramina that were present in all the positions were not analysed.

![Shape of mental foramen](image)

Fig. 4 The bar chart of different shapes of mental foramen in the sample population.

<table>
<thead>
<tr>
<th>Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>0</td>
<td>0</td>
<td>15 (19%)</td>
<td>35 (44.3%)</td>
<td>24 (30.4%)</td>
<td>5 (6.3%)</td>
</tr>
</tbody>
</table>

In this study, there were significant differences in **BD**, **AB** and **WX** measurements between males and females with independent t-test. (\(p< 0.05\)) (Table II) There were significant differences in **AC** and **AB** measurements among different age groups by one-way ANOVA. (\(p< 0.05\)) (Table III) However, there was no significant difference in all the parameters between the three racial groups. (Table IV)

Statistical analysis

The independent t-test was used to compare between males and females. One-way ANOVA was used to compare the significant differences between the different age groups. The data were analysed using SPSS version 22.
In humans, the mandible is one of the earliest bones to commence ossification. This bone is unique in its embryological origin as the bone undergoes both endochondral and intramembranous ossification. The coronoid and condylar process of mandible undergoes endochondral ossification, while the body of mandible undergoes intra-membranous ossification. The changes in the morphological and teeth eruption in mandible aid in age estimation until the third decade of life\(^\text{30}\). Further studies on the mandible are required after the third decade of life as the mandibular changes may be subtle\(^\text{30}\). In forensic, age, sex and race determination play a vital role in the identification of an individual\(^\text{31}\). The bone is considered an important tool for identification of skeletal remains as they can provide an approximation of age, sex and race\(^\text{32}\).

In this study, 79 mental foramina were assessed. The mental foramina were found to be in line with the longitudinal axis of the second premolar in 44.3% of mandibular observed. This study was compared with several other studies in other populations, i.e. in the Pakistanis\(^\text{32}\), Singaporean Malays and Indians\(^\text{34}\) and Saudi population\(^\text{10}\). On the contrary, in Caucasian populations, the mental foramen was located between the first and second premolars\(^\text{36}\), while in Tanzania, Thai, Chinese, British and Saudi Arabia, the location of the mental foramen varied between populations\(^\text{37}\).

The common positions include between two premolars, along the long axis of the second premolar and between the second premolar and first molar teeth\(^\text{38-42}\). These variations of position in mental foramen may be attributed to different ethnic and racial groups. However, in the present study, there was no difference in all the parameters among three races i.e. Malays, Chinese and Indians. By independent \(t\)-test, the height and length of the mandibular body showed significant difference between males and females with higher values found in males than females, \((p<0.05)\) and the results were in accordance with the literature\(^\text{43-45}\). (Table II)

In this study, 79 mental foramina were assessed. The mental foramina were found to be in line with the longitudinal axis of the second premolar in 44.3% of mandibular observed. This study was compared with several other studies in other populations, i.e. in the Pakistanis\(^\text{32}\), Singaporean Malays and Indians\(^\text{34}\) and Saudi population\(^\text{10}\). On the contrary, in Caucasian populations, the mental foramen was located between the first and second premolars\(^\text{36}\), while in Tanzania, Thai, Chinese, British and Saudi Arabia, the location of the mental foramen varied between populations\(^\text{37}\).

Table II. The mean and standard error of mean (SEM) of morphometric mental foramen measurements in male and female.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Male (Mean ± SEM)</th>
<th>Female (Mean ± SEM)</th>
<th>Sig. (‘p’ Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>1.02 ± 0.03</td>
<td>1.00 ± 0.02</td>
<td>0.64</td>
</tr>
<tr>
<td>BD</td>
<td>1.05 ± 0.03</td>
<td>0.93 ± 0.02</td>
<td>0.01**</td>
</tr>
<tr>
<td>AB</td>
<td>2.56 ± 0.04</td>
<td>2.43 ± 0.03</td>
<td>0.03*</td>
</tr>
<tr>
<td>VD</td>
<td>0.48 ± 0.01</td>
<td>0.49 ± 0.01</td>
<td>0.77</td>
</tr>
<tr>
<td>WY</td>
<td>1.65 ± 0.05</td>
<td>1.69 ± 0.05</td>
<td>0.61</td>
</tr>
<tr>
<td>XZ</td>
<td>5.74 ± 0.15</td>
<td>5.54 ± 50.08</td>
<td>0.31</td>
</tr>
<tr>
<td>WX</td>
<td>8.08 ± 0.10</td>
<td>7.74 ± 0.12</td>
<td>0.03*</td>
</tr>
<tr>
<td>HD</td>
<td>0.55 ± 0.12</td>
<td>0.50 ± 40.02</td>
<td>0.08</td>
</tr>
</tbody>
</table>

**p<0.01

Discussion

Table III. The mean and standard error of mean (SEM) of morphometric mental foramen measurements in different age groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Age groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-30 yrs old (Mean ± SEM)</td>
</tr>
<tr>
<td>AC</td>
<td>1.13 ± 0.02</td>
</tr>
<tr>
<td>BD</td>
<td>0.99 ± 0.04</td>
</tr>
<tr>
<td>AB</td>
<td>2.62 ± 0.05</td>
</tr>
<tr>
<td>VD</td>
<td>0.48 ± 0.02</td>
</tr>
<tr>
<td>WY</td>
<td>1.64 ± 0.06</td>
</tr>
<tr>
<td>XZ</td>
<td>5.71 ± 0.11</td>
</tr>
<tr>
<td>WX</td>
<td>7.89 ± 0.14</td>
</tr>
<tr>
<td>HD</td>
<td>0.53 ± 0.02</td>
</tr>
</tbody>
</table>

**p<0.01

Table IV. The mean and standard error of mean (SEM) of morphometric mental foramen measurements in Malay, Chinese and Indian.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Racial groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Malay (Mean ± SEM)</td>
</tr>
<tr>
<td>AC</td>
<td>1.04± 0.03</td>
</tr>
<tr>
<td>BD</td>
<td>1.00 ± 0.03</td>
</tr>
<tr>
<td>AB</td>
<td>2.54± 0.05</td>
</tr>
<tr>
<td>VD</td>
<td>0.49± 0.01</td>
</tr>
<tr>
<td>WY</td>
<td>1.66± 0.05</td>
</tr>
<tr>
<td>XZ</td>
<td>5.74± 0.09</td>
</tr>
<tr>
<td>WX</td>
<td>7.92± 0.11</td>
</tr>
<tr>
<td>HD</td>
<td>0.51± 0.02</td>
</tr>
</tbody>
</table>
In this study, the height of mandibular body and the distance between the alveolar crest and mental foramen were found to decrease with age. This is attributed to resorption in the mandibular part above the mental foramen due to loss of teeth and periodontal diseases. Local factors such as masticatory forces would also contribute to this reduction in the mandibular bone.

The position of mental foramen, especially its vertical relations within the body of the mandible varies from infancy to old age. The mental foramen is located midway between the upper and lower border of the mandible in the presence of the teeth, and appears to be near the upper margin of mandible in edentulous patients. The distance from the foramen to the inferior border of the mandible remains relatively constant throughout life, and the stability of this region does not depend on resorption of alveolar process above the foramen. Anatomically, one mental foramen are found on each side of the mandible. However, in about 2% to 10% incidence, the mandible was reported to possess more than one foramen, and up to 0.06% incidence showed absence of mental foramen. Nevertheless, there was no mention about the pathway of mental nerves and vessels in the absence of the mental foramen in the literature. In brief, the varied number and locations of mental foramen are essential for identification of unknown skeletal remains in forensic scenarios.

In the present study, the morphometric measurements of mandibular bone were studied among the different races i.e. Malays, Chinese and Indians. We speculate that different ethnic races might be consuming different type of food. Even, the food is different in each of the races. For instance, in Indians, they consume food such as legumes, grains and nuts, which are hard in consistency that will require active mastication. However, in Chinese, food such as noodles, rice and soup were consumed, which were soft food with smoother consistency. In the Malays, the type of food taken was a mixture between Indians and Chinese. From the results, there was no significant difference in mental foramen measurements between the three racial groups, which could be attributed to the interplay between cultures and intermarriage between the groups, leading to insignificant changes among them.

Conclusion

In conclusion, the mental foramen may exist in different morphological shapes, position and measurements. These factors may be influenced by various social-demographic factors, which may contribute to its final appearance. The result of the present study would enhance human identification by analysis of mental foramen. Further research may be needed to expand on other related variables in a larger sample size for validation and comparison purposes.

Acknowledgement

The authors would like to extend their sincere appreciation and gratitude to Universiti Kebangsaan Malaysia for the financial support (Grant-UKM FPR.4/244/FF-2016-235) and the Department of Forensic Medicine, Hospital Kuala Lumpur for provision of the data.

References

